Google
Binder Enhancements in Oreo

Linux Plumbers Android Microconference
September, 2017

Todd Kjos <tkjos@google.com>

mailto:tkjos@google.com

Binder Features added for Oreo

Multiple Binder Domains
Scatter-Gather

Fine-Grained Locking

RT Priority Inheritence

Binder Allocator: Security Bugfix
Binder Allocator: Lazy Free via Shrinker

Google

Multiple Binder Domains

e Each domain has its own:
o Device node (/dev/binder, /dev/hwbinder, ...)
o ServiceManager (service registration and discovery)
e Domains are isolated from each other
o binder: (aka “framework binder”) communication between non-vendor
processes
o hwbinder: communication between non-vendor processes and vendor
processes (HALs) and between vendor processes that implement HIDL
interfaces
o vndbinder. communication between vendor processes that implement
AIDL interfaces
e creation of domains are controlled at compile time by
CONFIG_ANDROID_BINDER_DEVICES Kconfig option. The three domains

listed above are the default and are all required for Oreo

Scatter-Gather

e Normal pattern is to copy data 3 times
o Serialize into parcel in the calling process
o Kernel copy to target process
o Unserialize in the target process
e With scatter-gather, this is reduced to only the kernel copy to target process

o Currently enabled for HIDL interfaces (hwbinder) only

Scatter-Gather Performance

HwBinder Scatter-Gather: Throughput vs Payload Size

40,000
30,000
W
S
'{Ej 20,000
£
10,000
0
512 1k 2k 4k 8k 16k 32k 64k 128k 256k
Payload Size
—non-SG —— SG

Fine-Grained Locking

e Used to have single global mutex to protect binder driver state

e Change motivated by priority-inversion cases causing long 95th/99th percentile latencies
o Contention wasn't really the issue
o Low-prio task preempted while holding mutex block high-prio tasks
o Results in long delays inducing in dropped-frames etc

e Since 2015 (Nexus 6p/5x), worked around this by disabling preemption when mutex is held
o Preemption re-enabled for user data copies, allocations etc
o It was a hacky, non-upstreamable solution -- but effective
o upstream binder driver was out-of-date vs what was being shipped

e Moved to fine-grained locking via spinlocks and per-process mutex (instead of global)

Fine-Grained Locking Performance

Iterations/s vs CIS pairs (no payload)

120,000

90,000
E

2 60,000
5

30,000

0

1 2 4 8 16 32 64
Client/Server Pairs
— Global —— Fine-grained —— Global{w/o preempt disable)

Fine-Grained Locking Performance

Low-priority load running on cpuQ. Measure latency of C/S pair on cpu3

Kl

Latency with low-prio C/S pair

e S [fg (ave)
= B fg (95th)
£ . o (ooth)
E 373 global
S

] [ave)

% I global

£ 250 (95th)

:g B ciobal

& (94th)

B

E 125

5

= 0

cpul: no load cpu(: 0 payload cpul: 64k payload

C/8 Pair Running on CPU 0 {minfreg)

RT Priority Inheritance

e binder already had nice priority inheritence

e Not sufficient with more Android processes running at real-time priority (especially with Treble’s
binderized HALS)

e Binder thread serving an RT client is promoted to appropriate RT sched class + prio

e RT Priority Inheritance can be enabled on a node-by-node basis

o Currently enabled for hwbinder, disabled for framework binder

RT Priority Inheritance Performance

Avrrival time - Event time plot

12 Arrival time - Event time plot o
7
10
6
8
5
6
4
I
% 1000 2000 3000 4000 5000 6000 7000
1000 2000 3000 4000 5000 6000 7000
Arrival time - Event time hi
200 Arrival time - Event time histogram
I beforePltxt (avg: 3.20ms, 99%: 4.88ms, 99.9% 7.93ms): 4000
I afterPl.txt (avg: 3.15ms, 99%: 3.98ms, 99.9% 4.85rns):|
1000
800
800
600
600

Binder Allocator: Security Bugfix

e Transaction header (containing kernel ptrs) mapped read-only in target user space

Client Process Server Process

transaction
data

0.0 ..

buffer buffer

binder driver

Read Only

_ mmaped

nsaction data copy

Binder Allocator: Security Bugfix (continued)

e Move buffer header out of shared area - no longer visible to userspace

Server Process
& 3

Read
OnIy
w

Client Process
Q, /S s mmaped

transaction
data
N

: g \)iansactlon data copy

data ptr
buffer buffer
binder driver

transact

On kernel
heap. Not
mapped

Binder Allocator: Lazy Free via Shrinker

e Problem: Since buffer header is no longer in the mmap’d space, it is freed when the last
transaction is complete. Many more allocs/frees
e Solution: Use Linux shrinker to free pages

Init Init

T data ptr T

m T

Before Security Patch After Security Patch

Binder Allocator: Lazy Free via Shrinker Performance

70 4| —— shrinker_payload_1
— marlin_payload 1
sodl— comman_payload_1

latency (microseconds
8

P
L]
]

1

i

5000 pu Lot 15000 20000 25000 30000
payload

Q&A

Google

